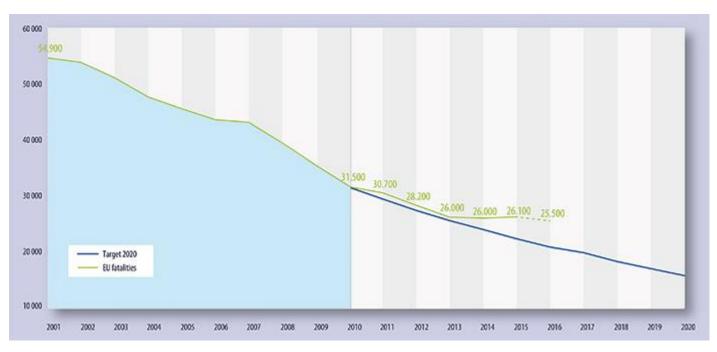
An architectural approach for safe cooperative autonomous vehicles

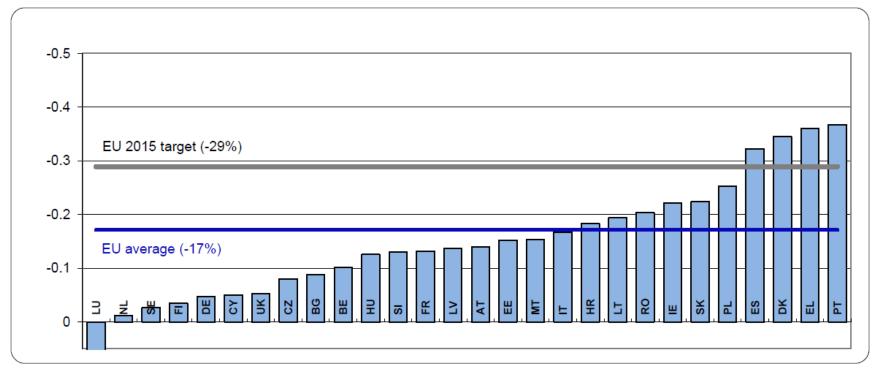
António Casimiro


casim@ciencias.ulisboa.pt http://www.di.fc.ul.pt/~casim

LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

> IFIP WG 10.4 Workshop on Assured Autonomy Champéry, Switzerland January 26, 2019

EU road fatalities 2001-2016



Source: EC, Mobility and Transport, 2017

To bring these numbers close to zero, vehicles must become increasingly autonomous

Evolution between 2010 and 2015

Source: EC, Mobility and Transport, 2017

Conclusion?

Some countries had too many fatalities in 2010!

Economic impact

• Estimated potential economic impact of autonomous vehicles in 2025:

Between \$200 billion and \$1.9 trillion

Autonomous and nearautonomous vehicles 0.2–1.9

- Compare with 2013 numbers for:
 - Automobile industry revenue: \$4 trillion
 - Aviation aircraft industry revenue: \$155 billion

Source: McKinsey, May 2013

Classification of autonomy

https://www.vda.de/de/themen/innovation-und-technik/automatisiertes-fahren.html

			$\langle ($)(
 Driver carries out all lane holding and lane changes	Driver carries out all lane holding or lane changes	Driver must continuously monitor the system		Driver needs no longer to continuously monitor the system. Must		No driver necessary in special applications System can		System can handle all situations automatically throughout
				potentially be available to take over		handle all situations automatically in the specific		the trip. No driver needed.
		System handles lane		System handles lane holding and changing in a specific		application case		
	System handles the other function	holding and changing in a specific application case		application case. Detects limits of system and asks the				
No intervening vehicle system active				driver to take over with sufficient warning				
Level 0 Driver only	Level 1 Assisted	Level 2 Partly automated		Level 3 Highly automated		Level 4 Fully automated		Level 5 Driverless
State of the art Innovation Further ahead						ahead		

Are we getting there?

- Autonomous vehicles are getting increasingly autonomous, and increasingly safe
 - Google self-driving car
 - https://www.youtube.com/watch?v=TsaES--OTzM
 - Volvo self-driving car
 - https://www.youtube.com/watch?v=bJwKuWz_lkE
 - BMW, GM, Audi, Tesla, ... and now also UBER!!

Yes, but still at a significant cost!

- For **safety**, these prototype vehicles rely on:
 - Local sensor data easier to ensure dependable operation, no network dependency
 - Expensive hardware and redundancy for accurate context awareness and reliability
 - Restricted operation environments to reduce possible hazards
 - Restricted functional performance to reduce resource requirements, severity of incidents and hence safety requirements

Google self-driving car restricted functional performance

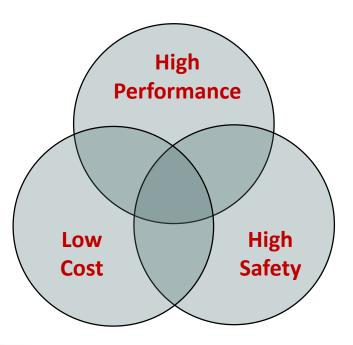
"It struck me as cautious. It drove **slowly** and deliberately, and I got the impression that it's more likely to **annoy other drivers** than to harm them."

http://theoatmeal.com/blog/google_self_driving_car

Google said in 2011

That the Google cars would be able to drive anywhere a car can legally drive and that the hope was to **field a fully autonomous car by the end of the decade**.

Google now says


"How quickly can we get this into people's hands? If you read the papers, you see maybe it's three years, **maybe it's thirty years**. And I am here to tell you that honestly, it's a bit of both"

Chris Urmson, Google

Grand challenge

- Assuring the needed high safety
- Using low cost solutions
- And achieving high (functional) performance
 - Possibly by employing:
 - Complex software solutions
 - Vehicular cooperation

Challenges: Fail-operational

- There will be no driver in the loop
- Autonomous driver will have to handle all situations
- Extremely demanding requirements to sensors, actuators and computing
- No fail-safe state system must be designed to be failoperational for at least a limited amount of time

Challenges: Security

- Need to prevent unauthorized access or software change
- Need to deal with an increasing amount of threats...
- …and increasing complexity of vehicle software systems, potentially introducing more vulnerabilities
- Need to manage potentially conflicting goals between security and safety

Challenges: Big data collection

- More than **1 Gb/s** stream of produced data
- Need to collect and process a lot of data
 - Lots of sensors
 - Road maps and conditions
 - Traffic conditions
 - Weather conditions
 - Traffic signs
 - Other vehicles around the car
 - Pedestrians
 - ...
- Bring cloud computing to the car: fog computing

Challenges: Sensor fusion

- Need for accurate data
- How to classify objects?
- How to avoid false detections?
- How to avoid missed detections?
- Dependent on context/situation:
 - Amount of surrounding objects and object types
 - Lighting conditions
 - Weather
 - ...

More challenges

• Validation

- Has the Google car been sufficiently validated?
- Is it sufficient to use synthetic data and simulation?
- SW cost integration
 - Platforms allowing modularity, reuse, independent V&V, etc.
- Driver interaction
 - Before we get to driverless, drivers may still take control
 - HMI interfaces: who is driving now?
- Legal
 - Who is responsible when a car crashes?

• Ethical

• A driver has ethics, but an "intelligent" vehicle does not...

Cooperative vehicles challenges

- No existing business model yet for carmakers to incorporate cooperative functions in new vehicles
 - Who will pay for the benefit of having such cooperative functions (based on cooperative sensing)?
- New safety risks when using external data for decision making in safety-critical functions
 - How to ensure that received data is trustworthy and will not compromise safety?
- Strong **interoperability** is required
 - New standards must still be developed
- Even more data being collected through remote sensors (cooperative sensing)
 - How to manage such huge amount of information?

Further ahead: the cooperation dimension

© António Casimiro

FP7 KARYON project

Kernel-based ARchitecture for safetY-critical cONtrol (2011-2014)

Provide system solutions for predictable and safe coordination of smart vehicles that autonomously cooperate and interact in an open and inherently uncertain environment

Application domains

• Automotive domain

- Adaptive Cruise Control Systems
- Coordinated lane change manoeuvres
- Coordinated intersection crossing

Avionics domain

 UAS/Aircraft manoeuvres in shared air space

https://youtu.be/blKPs53eWzo

Promo videos available on

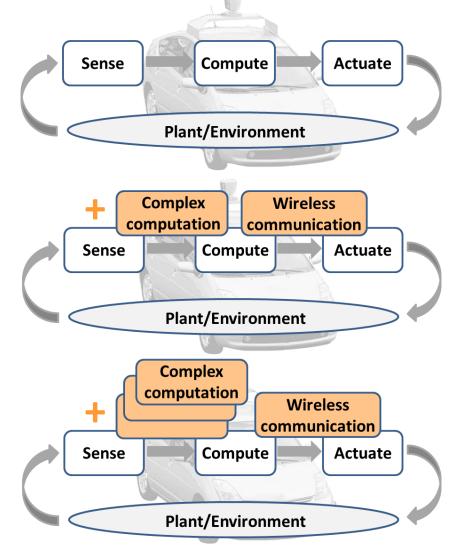
http://www.youtube.com/user/KaryonProject

Cooperation

And related terminology

- Cooperation: explicit exchange of data, allowing all participants achieving their own goals and eventually coordinate
- Coordination: all participants achieve their own goals with or without explicit interaction (e.g., using pre-defined rules)
- Collaboration: interaction towards a common goal
 - Not very appropriate for autonomous vehicles, where each vehicle has its own goals, own view of environment, etc.

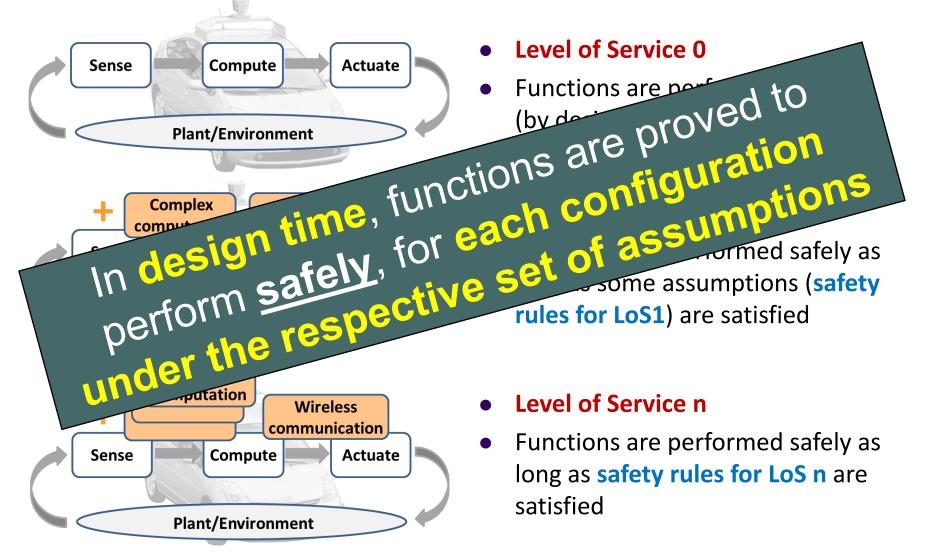
Cooperation scope


- Challenge: How do cooperative vehicles find out the vehicles with which they need to cooperate?
- Possible approaches
 - **Distributed solutions**: e.g. protocols for agreement on a certain group view or membership
 - **Centralized solutions**: e.g. road-side unit or cloud service that is aware of all vehicles in some area
 - Pre-defined groups: e.g., in platooning all vehicles know their peers

KARYON problem statement

- Improve functional performance and keep safety by using more accurate context information
- Exploit cooperation (e.g., exchange of information with nearby vehicles)
- Exploit complex software solutions (e.g., environment recognition through video processing)
- Address the **temporal uncertainties** inherent to
 - Wireless communication
 - Complex processing

Approach: design time

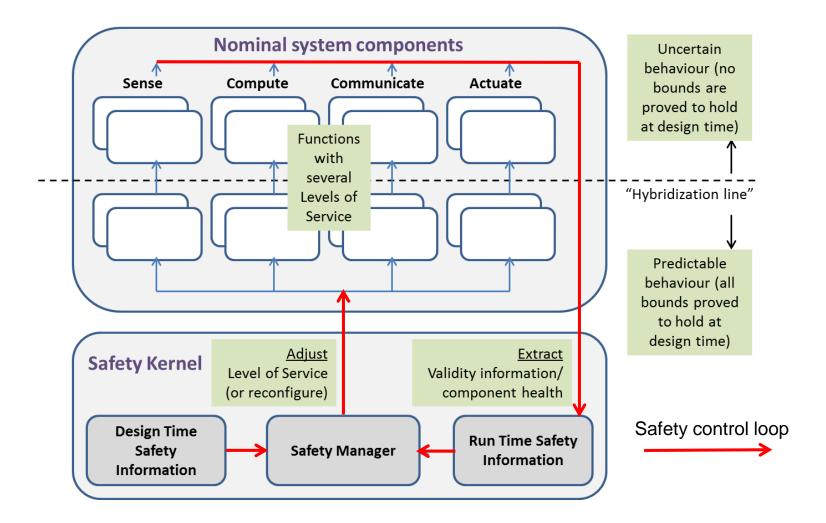

• Level of Service 0

- Functions are performed safely (by design, hazardous situations are excluded)
- Level of Service 1
- Functions are performed safely as long as some assumptions (safety rules for LoS1) are satisfied

Level of Service n

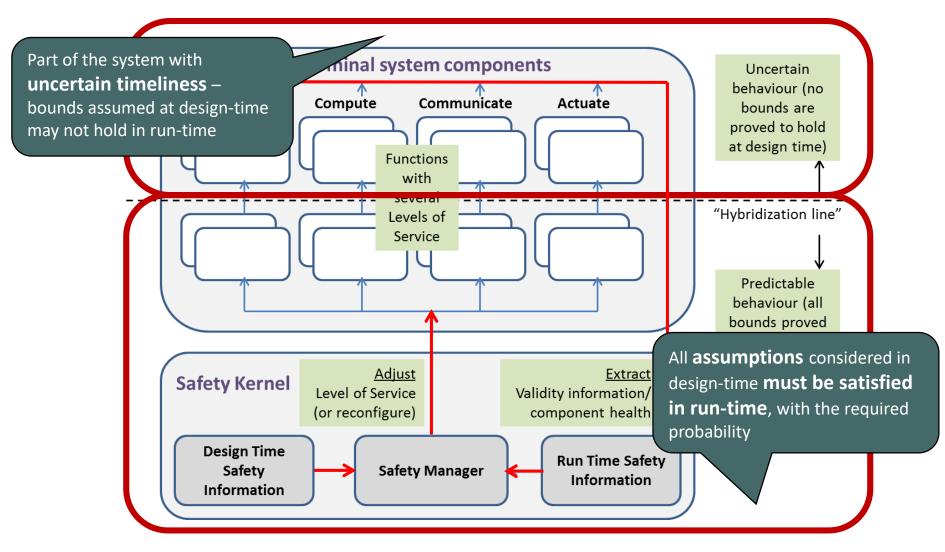
 Functions are performed safely as long as safety rules for LoS n are satisfied

Approach: design time

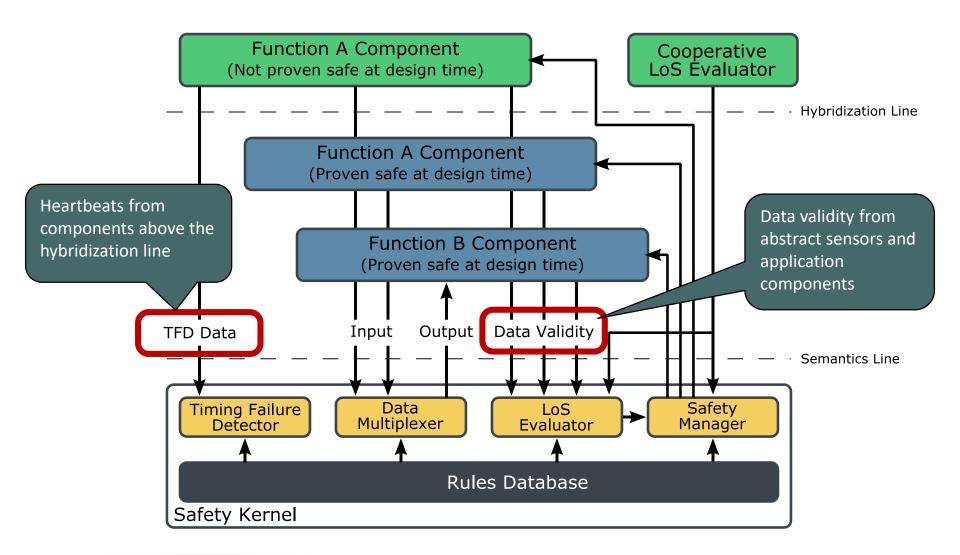

Approach: run-time

In run-time, safety management is performed by a Safety Kernel

- The Safety Kernel is continuously checking if safety rules are satisfied and determines the highest possible Level of Service (LoS)
- For that, it collects system health data, namely:
 - The validity of sensor data
 - The timeliness of components' execution

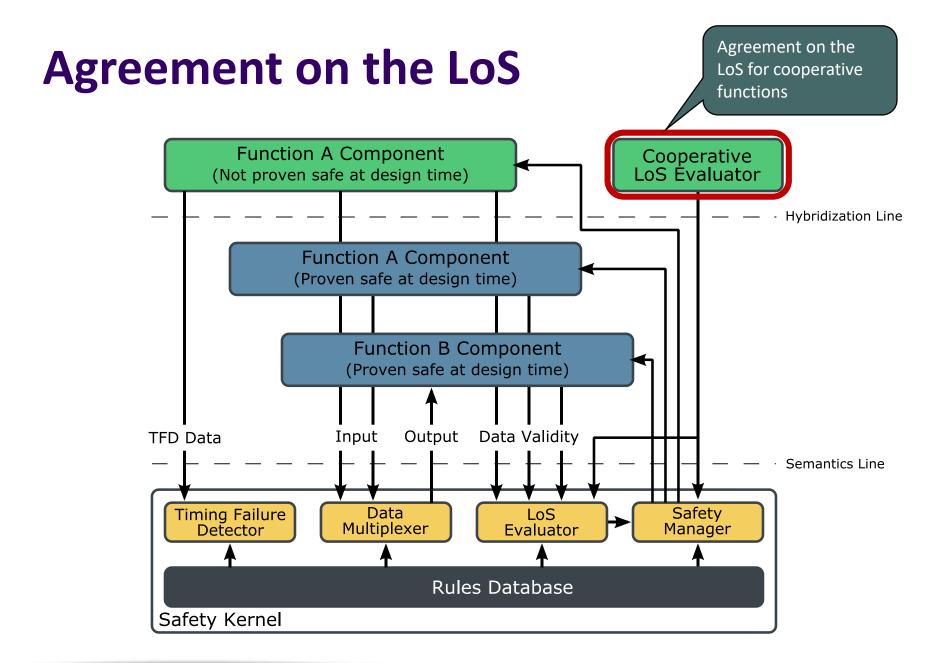


The KARYON architectural pattern



The KARYON architectural pattern

A closer look into the SK



Cooperation with a Safety Kernel

• The Safety Kernel is a local component

- It ensures that functions will be performed by the (local) system (e.g. a vehicle) at the highest possible Level of Service (LoS), given the observed timeliness of components and data validity
- Is it possible to cooperate if each peer has a different perception of the LoS under which some function should be performed?
 - Yes, but with some trade-offs
 - It is harder to predict how a peer will behave

Cooperative LoS evaluation

• Why agreement on LoS?

- Cooperative driving function design assumes that all vehicles perform the function in the same LoS
- Lower uncertainty implies better performance
- Allows vehicles to agree on a common "Cooperative LoS"
 - If agreement is reached in a timely way, then vehicles can rely on the cooperative LoS
 - Otherwise, all vehicles will implicitly agree to perform the function in the lowest LoS (without cooperating)

Cooperative LoS evaluation

- The Cooperative LoS is evaluated based on all the Local LoS values proposed by vehicles
- A fault tolerant consensus protocol is executed to agree on the cooperative LoS
- The decision is taken as follows:

Cooperative LoS = min (all received Local LoS)

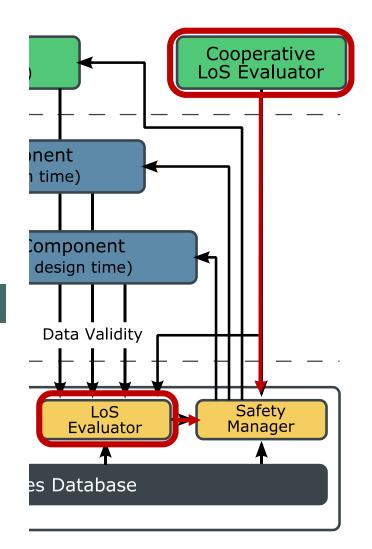
- The result is sent to the Safety Manager
- The result **must be sent periodically**

(Local) LoS evaluation

- The Local LoS is evaluated (by the LoS evaluator component) only based on locally generated information (validity and timeliness), which is compared to safety rules
- Safety rule example:

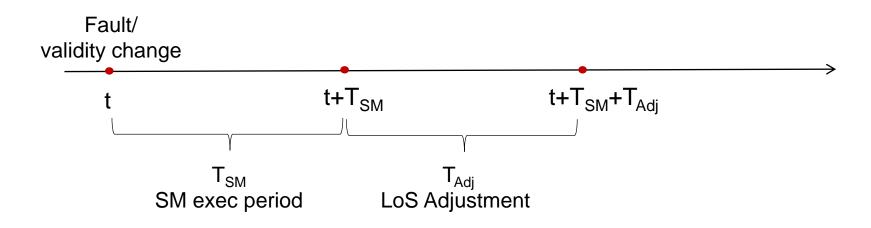
Local LoS := LoS_2 if validity_received_timely && validity > validity_threshold && cooperative_LoS_received_timely LoS_1 otherwise

 The determined Local LoS is sent to the cooperative LoS agreement component and then forwarded to the other vehicles

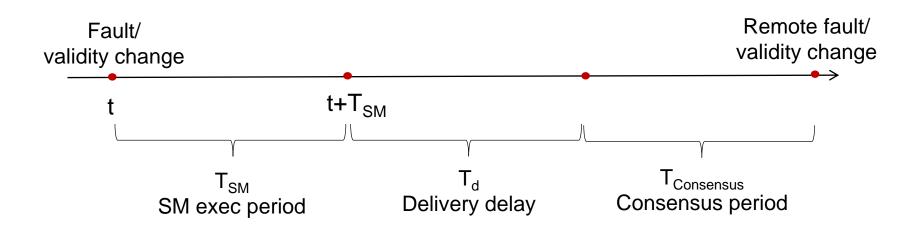


Effective LoS

- Given the locally determined LoS, and the Cooperative LoS, it is possible to determine the LoS that must be effectively considered (for safety)
- It is calculated as:


Effective LoS = min (Local LoS, Coop LoS)

 The Safety Manager is in charge of informing functional components about the Effective LoS

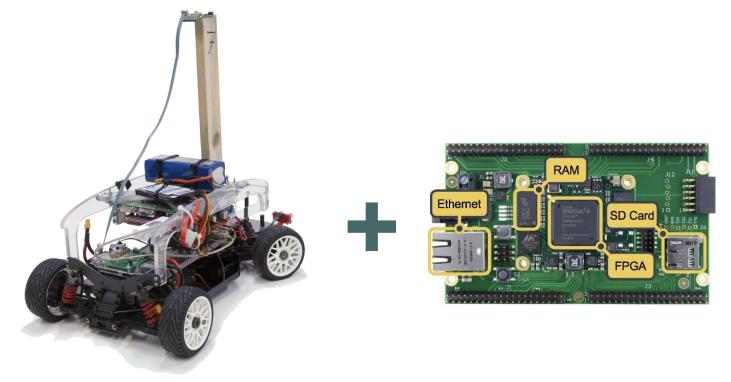

Timeliness analysis (1)

- The Safety Manager executes periodically
- The LoS adjustment latency is always bounded, for all components below the hybridization line
- LoS change due to local changes in integrity level is always performed within t+T_{SM}+T_{Adj} from the fault occurrence

Timeliness analysis (2)

- It is possible to discard messages that take more that T_d time units to be transmitted
- Every T_{Consensus} time units, all Cooperative LoS Evaluators must compute a result
- The (lower) Local LoS will be available at other vehicles at most by t+T_{SM}+T_d+T_{Consensus}
- If the Cooperative LoS Evaluator is not timely, or if the message transmission is not timely, the other vehicles will detect a timing failure of their Cooperative LoS Evaluator by time t+T_{SM}+T_d+T_{Consensus}
- Therefore, on the other vehicles it will take an additional T_{SM}+T_{Adj} to switch to the lower LoS

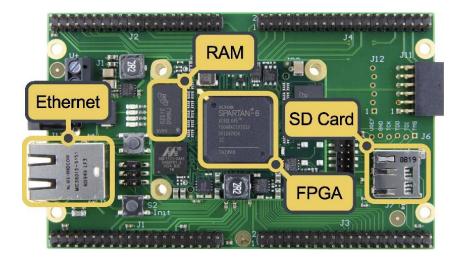
LoS change bounded by time $2T_{SM}+T_d+T_{Consensus}+T_{Adj}$



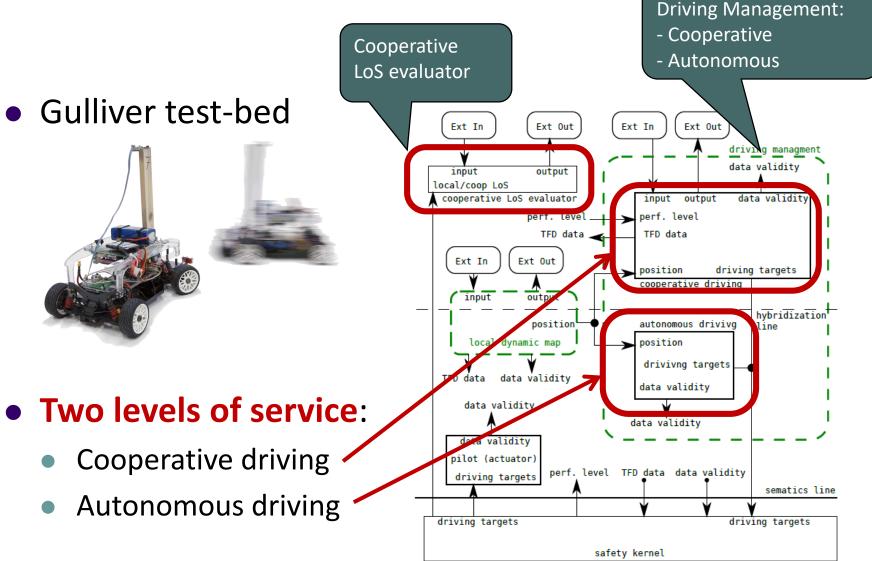
Application

© António Casimiro

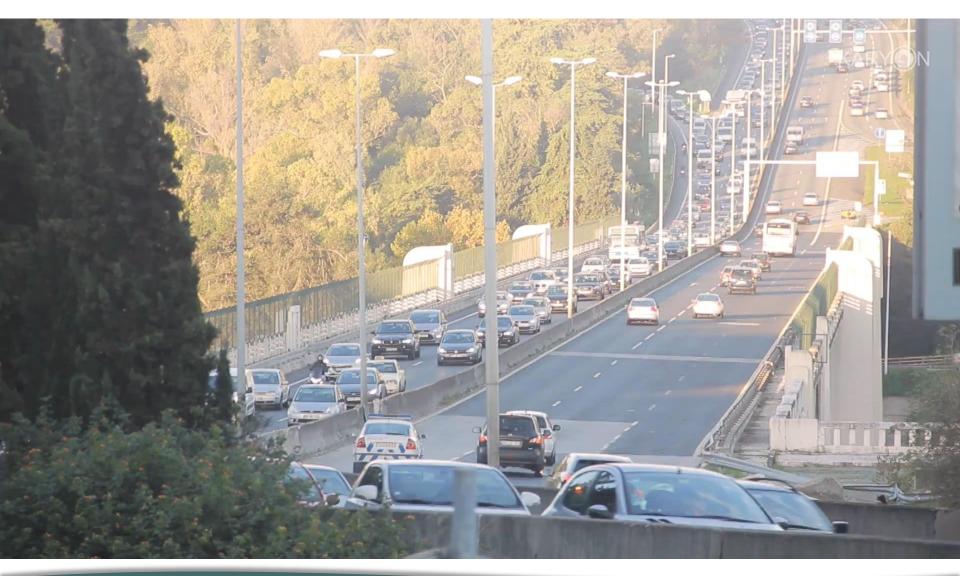
KARYON (Gulliver) vehicle



Autonomous and cooperative vehicle with KARYON architecture


Safety kernel implementation

- FPGA-based development board
- Processing unit: LEON3 soft-processor (SPARC v8 arch)
- RTEMS executing on top
- Ethernet interface with payload system



Vehicular application

KARYON

Automotive domain video

Thank you for your attention!

To reach me: casim@ciencias.ulisboa.pt Web page: http://www.di.fc.ul.pt/~casim

